skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guo, Boyuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent years have seen growing interest among both researchers and practitioners in user-engaged approaches to algorithm auditing, which directly engage users in detecting problematic behaviors in algorithmic systems. However, we know little about industry practitioners’ current practices and challenges around user-engaged auditing, nor what opportunities exist for them to better leverage such approaches in practice. To investigate, we conducted a series of interviews and iterative co-design activities with practitioners who employ user-engaged auditing approaches in their work. Our findings reveal several challenges practitioners face in appropriately recruiting and incentivizing user auditors, scaffolding user audits, and deriving actionable insights from user-engaged audit reports. Furthermore, practitioners shared organizational obstacles to user-engaged auditing, surfacing a complex relationship between practitioners and user auditors. Based on these findings, we discuss opportunities for future HCI research to help realize the potential (and mitigate risks) of user-engaged auditing in industry practice. 
    more » « less
  2. In this paper, we studied people’s smart home privacy-protective behaviors (SH-PPBs), to gain a better understanding of their privacy management do’s and don’ts in this context. We first surveyed 159 participants and elicited 33 unique SH-PPB practices, revealing that users heavily rely on ad hoc approaches at the physical layer (e.g., physical blocking, manual powering off). We also characterized the types of privacy concerns users wanted to address through SH-PPBs, the reasons preventing users from doing SH-PPBs, and privacy features they wished they had to support SH-PPBs. We then storyboarded 11 privacy protection concepts to explore opportunities to better support users’ needs, and asked another 227 participants to criticize and rank these design concepts. Among the 11 concepts, Privacy Diagnostics, which is similar to security diagnostics in anti-virus software, was far preferred over the rest. We also witnessed rich evidence of four important factors in designing SH-PPB tools, as users prefer (1) simple, (2) proactive, (3) preventative solutions that can (4) offer more control. 
    more » « less